Abstract
Carbohydrates are key building blocks for advanced functional materials owing to their biological functions and unique material properties. Here, we propose a star-shaped discrete block co-oligomer (BCO) platform to access carbohydrate nanostructures in bulk and thin-film states via the microphase separation of immiscible carbohydrate and hydrophobic blocks (maltooligosaccharides with 1-4 glucose units and solanesol, respectively). BCOs with various star-shaped architectures and saccharide volume fractions were synthesized using a modular approach. In the bulk, the BCOs self-assembled into common lamellar, cylindrical, and spherical carbohydrate microdomains as well as double gyroid, hexagonally perforated lamellar, and Fddd network morphologies with domain spacings of ∼7 nm. In thin films, long-range-ordered periodic carbohydrate microdomains were fabricated via spin coating. Such controlled spatial arrangements of functional carbohydrate moieties on the nanoscale have great application potential in biomedical and nanofabrication fields.
| Original language | English |
|---|---|
| Pages (from-to) | 3978-3989 |
| Number of pages | 12 |
| Journal | Biomacromolecules |
| Volume | 23 |
| Issue number | 9 |
| DOIs | |
| State | Published - 12 Sep 2022 |