TY - GEN
T1 - SHUFFLENET
T2 - AN APPLICATION OF GENERALIZED PERFECT SHUFFLES TO MULTIHOP LIGHTWAVE NETWORKS.
AU - Hluchyj, Michael G.
AU - Karol, Mark J.
PY - 1988
Y1 - 1988
N2 - The authors propose a multihop wavelength-division-multiplexing (WDM) approach, referred to as ShuffleNet, for achieving concurrency in distributed lightwave networks. ShuffleNet can be configured with each user having as few as one fixed-wavelength transmitter and one fixed-wavelength receiver, avoiding both wavelength agility and pretransmission coordination problems. Still, the network can achieve at least 40% of the maximum efficiency possible with wavelength-agile transmitters and receivers. To transmit a packet from one user to another, however, may require routing the packet through intermediate users, each repeating the packet on a new wavelength, until the packet is finally transmitted on a wavelength that the destination user receives. For such a multihop lightwave network, the transmit and receive wavelengths must be assigned to users to provide both a path between all users and the efficient utilization of all wavelength channels. A class of assignment schemes is proposed which is based on a generalization of the perfect shuffle and achieves high efficiency for uniform traffic loads. Physically, the network may take on a variety of topologies, including a bus, tree, or star.
AB - The authors propose a multihop wavelength-division-multiplexing (WDM) approach, referred to as ShuffleNet, for achieving concurrency in distributed lightwave networks. ShuffleNet can be configured with each user having as few as one fixed-wavelength transmitter and one fixed-wavelength receiver, avoiding both wavelength agility and pretransmission coordination problems. Still, the network can achieve at least 40% of the maximum efficiency possible with wavelength-agile transmitters and receivers. To transmit a packet from one user to another, however, may require routing the packet through intermediate users, each repeating the packet on a new wavelength, until the packet is finally transmitted on a wavelength that the destination user receives. For such a multihop lightwave network, the transmit and receive wavelengths must be assigned to users to provide both a path between all users and the efficient utilization of all wavelength channels. A class of assignment schemes is proposed which is based on a generalization of the perfect shuffle and achieves high efficiency for uniform traffic loads. Physically, the network may take on a variety of topologies, including a bus, tree, or star.
UR - http://www.scopus.com/inward/record.url?scp=0023828026&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:0023828026
SN - 0818608331
T3 - Proceedings - IEEE INFOCOM
SP - 379
EP - 390
BT - Proceedings - IEEE INFOCOM
PB - IEEE
ER -