Rotaxane Formation of Multicyclic Polydimethylsiloxane in a Silicone Network: A Step toward Constructing “Macro-Rotaxanes” from High-Molecular-Weight Axle and Wheel Components

Minami Ebe, Asuka Soga, Kaiyu Fujiwara, Brian J. Ree, Hironori Marubayashi, Katsumi Hagita, Atsushi Imasaki, Miru Baba, Takuya Yamamoto, Kenji Tajima, Tetsuo Deguchi, Hiroshi Jinnai, Takuya Isono, Toshifumi Satoh

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Rotaxanes consisting of a high-molecular-weight axle and wheel components (macro-rotaxanes) have high structural freedom, and are attractive for soft-material applications. However, their synthesis remains underexplored. Here, we investigated macro-rotaxane formation by the topological trapping of multicyclic polydimethylsiloxanes (mc-PDMSs) in silicone networks. mc-PDMS with different numbers of cyclic units and ring sizes was synthesized by cyclopolymerization of a α,ω-norbornenyl-functionalized PDMS. Silicone networks were prepared in the presence of 10–60 wt % mc-PDMS, and the trapping efficiency of mc-PDMS was determined. In contrast to monocyclic PDMS, mc-PDMSs with more cyclic units and larger ring sizes can be quantitatively trapped in the network as macro-rotaxanes. The damping performance of a 60 wt % mc-PDMS-blended silicone network was evaluated, revealing a higher tan δ value than the bare PDMS network. Thus, macro-rotaxanes are promising as non-leaching additives for network polymers.

Original languageEnglish
Article numbere202304493
JournalAngewandte Chemie - International Edition
Volume62
Issue number35
DOIs
StatePublished - 28 Aug 2023

Keywords

  • Cyclic Polymers
  • Damping Performance
  • Macro-Rotaxane
  • Silicone Networks
  • Topological Trapping

Fingerprint

Dive into the research topics of 'Rotaxane Formation of Multicyclic Polydimethylsiloxane in a Silicone Network: A Step toward Constructing “Macro-Rotaxanes” from High-Molecular-Weight Axle and Wheel Components'. Together they form a unique fingerprint.

Cite this