TY - JOUR
T1 - Exploration of computational approaches to predict the toxicity of chemical mixtures
AU - Kar, Supratik
AU - Leszczynski, Jerzy
N1 - Publisher Copyright:
© 2019 by the authors.
PY - 2019
Y1 - 2019
N2 - Industrial advances have led to generation of multi-component chemicals, materials and pharmaceuticals which are directly or indirectly affecting the environment. Although toxicity data are available for individual chemicals, generally there is no toxicity data of chemical mixtures. Most importantly, the nature of toxicity of these studied mixtures is completely different to the single components, which makes the toxicity evaluation of mixtures more critical and challenging. Interactions of individual chemicals in a mixture can result in multifaceted and considerable deviations in the apparent properties of its ingredients. It results in synergistic or antagonistic effects as opposed to the ideal case of additive behavior i.e., concentration addition (CA) and independent action (IA). The CA and IA are leading models for the assessment of joint activity supported by pharmacology literature. Animal models for toxicity testing are time- and money-consuming as well as unethical. Thus, computational approaches are already proven efficient alternatives for assessing the toxicity of chemicals by regulatory authorities followed by industries. In silico methods are capable of predicting toxicity, prioritizing chemicals, identifying risk and assessing, followed by managing, the risk. In many cases, the mechanism behind the toxicity from species to species can be understood by in silico methods. Until today most of the computational approaches have been employed for single chemical's toxicity. Thus, only a handful of works in the literature and methods are available for a mixture's toxicity prediction employing computational or in silico approaches. Therefore, the present review explains the importance of evaluation of a mixture's toxicity, the role of computational approaches to assess the toxicity, followed by types of in silico methods. Additionally, successful application of in silico tools in a mixture's toxicity predictions is explained in detail. Finally, future avenues towards the role and application of computational approaches in a mixture's toxicity are discussed.
AB - Industrial advances have led to generation of multi-component chemicals, materials and pharmaceuticals which are directly or indirectly affecting the environment. Although toxicity data are available for individual chemicals, generally there is no toxicity data of chemical mixtures. Most importantly, the nature of toxicity of these studied mixtures is completely different to the single components, which makes the toxicity evaluation of mixtures more critical and challenging. Interactions of individual chemicals in a mixture can result in multifaceted and considerable deviations in the apparent properties of its ingredients. It results in synergistic or antagonistic effects as opposed to the ideal case of additive behavior i.e., concentration addition (CA) and independent action (IA). The CA and IA are leading models for the assessment of joint activity supported by pharmacology literature. Animal models for toxicity testing are time- and money-consuming as well as unethical. Thus, computational approaches are already proven efficient alternatives for assessing the toxicity of chemicals by regulatory authorities followed by industries. In silico methods are capable of predicting toxicity, prioritizing chemicals, identifying risk and assessing, followed by managing, the risk. In many cases, the mechanism behind the toxicity from species to species can be understood by in silico methods. Until today most of the computational approaches have been employed for single chemical's toxicity. Thus, only a handful of works in the literature and methods are available for a mixture's toxicity prediction employing computational or in silico approaches. Therefore, the present review explains the importance of evaluation of a mixture's toxicity, the role of computational approaches to assess the toxicity, followed by types of in silico methods. Additionally, successful application of in silico tools in a mixture's toxicity predictions is explained in detail. Finally, future avenues towards the role and application of computational approaches in a mixture's toxicity are discussed.
KW - Computational
KW - In silico
KW - Mixture
KW - QSAR
KW - Toxicity
UR - http://www.scopus.com/inward/record.url?scp=85063959261&partnerID=8YFLogxK
U2 - 10.3390/toxics7010015
DO - 10.3390/toxics7010015
M3 - Review article
AN - SCOPUS:85063959261
SN - 2305-6304
VL - 7
JO - Toxics
JF - Toxics
IS - 1
M1 - 15
ER -