Electronic Structure and Optical Properties of Designed Photo-Efficient Indoline-Based Dye-Sensitizers with D-AâÏ€-A Framework

Juganta K. Roy, Supratik Kar, Jerzy Leszczynski

Research output: Contribution to journalArticlepeer-review

54 Scopus citations

Abstract

Seven D-A-π-A-based indoline (IND) dyes that were designed via quantitative-structure-property relationship modeling have been comprehensively investigated using computational approaches to evaluate their prospect of application in future dye-sensitized solar cells (DSSCs). An array of optoelectronic properties of the isolated dye and dyes adsorbed on a TiO 2 cluster that simulates the semiconductor were explored by density functional theory (DFT) and time-dependent DFT methods. Light absorption spectra, vertical dipole moment, shift of the conduction band of semiconductor, excited state lifetime, driving force of electron injection, photostability of the excited state, and exciton binding energy were computed. Our study showed that the presence of an internal acceptor such as pyrido[3,4-b]pyrazine (pyrazine) would influence greater the open circuit voltage (V OC ), compared to the benzothiadiazole moiety. Considering the balance between the V OC and J SC (short circuit current) along with the all calculated characteristics, the IND3, IND5, and IND10 are the most suited among the designed dyes to be used as potential candidates for the photo-efficient DSSCs. The present study provides the results of rational molecular design followed by exploration of photophysical properties to be used as a valuable reference for the synthesis of photo-efficient dyes for DSSCs.

Original languageEnglish
Pages (from-to)3309-3320
Number of pages12
JournalJournal of Physical Chemistry C
Volume123
Issue number6
DOIs
StatePublished - 14 Feb 2019

Fingerprint

Dive into the research topics of 'Electronic Structure and Optical Properties of Designed Photo-Efficient Indoline-Based Dye-Sensitizers with D-AâÏ€-A Framework'. Together they form a unique fingerprint.

Cite this