TY - JOUR
T1 - Director gliding in a nematic liquid crystal layer
T2 - Quantitative comparison with experiments
AU - Mema, E.
AU - Kondic, L.
AU - Cummings, L. J.
N1 - Publisher Copyright:
© 2018 American Physical Society.
PY - 2018/3/19
Y1 - 2018/3/19
N2 - The interaction between nematic liquid crystals and polymer-coated substrates may lead to slow reorientation of the easy axis (so-called "director gliding") when a prolonged external field is applied. We consider the experimental evidence of zenithal gliding observed by Joly et al. [Phys. Rev. E 70, 050701 (2004)PLEEE81539-375510.1103/PhysRevE.70.050701] and Buluy et al. [J. Soc. Inf. Disp. 14, 603 (2006)1071-092210.1889/1.2235686] as well as azimuthal gliding observed by S. Faetti and P. Marianelli [Liq. Cryst. 33, 327 (2006)LICRE60267-829210.1080/02678290500512227], and we present a simple, physically motivated model that captures the slow dynamics of gliding, both in the presence of an electric field and after the electric field is turned off. We make a quantitative comparison of our model results and the experimental data and conclude that our model explains the gliding evolution very well.
AB - The interaction between nematic liquid crystals and polymer-coated substrates may lead to slow reorientation of the easy axis (so-called "director gliding") when a prolonged external field is applied. We consider the experimental evidence of zenithal gliding observed by Joly et al. [Phys. Rev. E 70, 050701 (2004)PLEEE81539-375510.1103/PhysRevE.70.050701] and Buluy et al. [J. Soc. Inf. Disp. 14, 603 (2006)1071-092210.1889/1.2235686] as well as azimuthal gliding observed by S. Faetti and P. Marianelli [Liq. Cryst. 33, 327 (2006)LICRE60267-829210.1080/02678290500512227], and we present a simple, physically motivated model that captures the slow dynamics of gliding, both in the presence of an electric field and after the electric field is turned off. We make a quantitative comparison of our model results and the experimental data and conclude that our model explains the gliding evolution very well.
UR - http://www.scopus.com/inward/record.url?scp=85044424699&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.97.032704
DO - 10.1103/PhysRevE.97.032704
M3 - Article
C2 - 29776080
AN - SCOPUS:85044424699
SN - 2470-0045
VL - 97
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 3
M1 - 032704
ER -