TY - JOUR
T1 - Dielectrowetting of a thin nematic liquid crystal layer
AU - Mema, E.
AU - Kondic, L.
AU - Cummings, L. J.
N1 - Publisher Copyright:
© 2021 American Physical Society.
PY - 2021/3
Y1 - 2021/3
N2 - We consider a mathematical model that describes the flow of a nematic liquid crystal (NLC) film placed on a flat substrate, across which a spatially varying electric potential is applied. Due to their polar nature, NLC molecules interact with the (nonuniform) electric field generated, leading to instability of a flat film. Implementation of the long wave scaling leads to a partial differential equation that predicts the subsequent time evolution of the thin film. This equation is coupled to a boundary value problem that describes the interaction between the local molecular orientation of the NLC (the director field) and the electric potential. We investigate numerically the behavior of an initially flat film for a range of film heights and surface anchoring conditions.
AB - We consider a mathematical model that describes the flow of a nematic liquid crystal (NLC) film placed on a flat substrate, across which a spatially varying electric potential is applied. Due to their polar nature, NLC molecules interact with the (nonuniform) electric field generated, leading to instability of a flat film. Implementation of the long wave scaling leads to a partial differential equation that predicts the subsequent time evolution of the thin film. This equation is coupled to a boundary value problem that describes the interaction between the local molecular orientation of the NLC (the director field) and the electric potential. We investigate numerically the behavior of an initially flat film for a range of film heights and surface anchoring conditions.
UR - http://www.scopus.com/inward/record.url?scp=85104478535&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.103.032702
DO - 10.1103/PhysRevE.103.032702
M3 - Article
C2 - 33862725
AN - SCOPUS:85104478535
SN - 2470-0045
VL - 103
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 3
M1 - 032702
ER -